

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme:	BACHELOR OF TECHNOLOGY (Electronics and Communication Engineering)
Semester:	III
Course Code:	202000303

Course Title: Probability - Statistics and Numerical Methods

Course Group: Basic Science Course

Course Objectives: The main objective of this course is to provide students with the basics of probabilistic and statistical analysis and various numerical methods to develop problem solving skills used in varied engineering disciplines.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Practical	Credits	The	eory	J/V/P*		Total
Lecture	Tutorial			Internal	External	Internal	External	Total
3	2	0	4	50 / 18	50/17	-	-	100 /35

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours			
1	Probability:				
	Sample Space, Events, Probability of an Event, Additive Rules, Conditional				
	Probability, Independence and Product Rule, Baye's Rule.				
2	Random Variables and Probability Distributions:	6			
	Concept of Random Variable, Discrete Probability Distributions, Continuous				
	Probability Distributions, Mean of a Random Variable, Variance and Covariance of				
	Random Variable, Means and Variances of Linear Combinations of Random				
	Variables, Chebyshev's Theorem.				
3	Correlation:	4			
	Understand the meaning of Correlation, Karl Pearson's Coefficient of Correlation,				
	Spearman's Rank Correlation Coefficient				
4	Some Discrete and Continuous Probability Distributions:	10			
	The Binomial Distribution, Poisson Distribution and Poisson Process. Continuous				
	Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Normal				
	Approximation to the Binomial, Chi Squared Distribution				

Page 1 of 4

5	Roots of algebraic and transcendental equations:	4
	The Bisection Method, The False-Position Method, The Newton-Raphson Method,	
	The Secant Method	
6	Solution of a system of linear Equation:	2
	Gauss- Jacobi method and Gauss-Seidel method	
7	Curve Fitting:	3
	Linear Regression, Nonlinear Regression	
8	Interpolation:	4
	Newton's forward and Backward Interpolation methods, Lagrange Interpolating	
	Polynomials, Newton's Divided-Difference Interpolating Polynomials	
9	Numerical Integration:	3
	The Trapezoidal Rule, Simpson's Rules	
10	Numerical Solution of ODE:	3
	Euler's Method, Improvement of Euler's Method, Runge-Kutta 4th Order	

List of Practicals / Tutorials:

1	Basic probability			
2	Conditional probability, Multiplication rule, Baye's Theorem			
3	Random Variable, Mean, Variance and Covariance of Random Variable, Chebyshev's			
	Theorem			
4	Karl Pearson's Coefficient of Correlation, Spearman's Rank Correlation Coefficient			
5	Binomial Distribution, Poisson Distribution and Poisson Process			
6	Normal Distribution, Normal Approximation to the Binomial, Chi Squared Distribution			
7	The Bisection Method, The False-Position Method, The Newton-Raphson Method, The Secant			
	Method			
8	Gauss- Jacobi method and Gauss-Seidel method, Linear Regression, Nonlinear Regression			
9	Newton's forward and Backward Interpolation methods, Lagrange Interpolating Polynomials,			
	Newton's Divided-Difference Interpolating Polynomials			
10	The Trapezoidal Rule, Simpson's Rules			
11	Euler's Method, Improvement of Euler's Method, Runge-Kutta 4th Order			

Reference Books:

1	Probability and Statistics for engineers by Richard A Johnson, Irwin Miller, John Freund, 8e,			
	Pearson Publishing			
2	Probability & Statistics for Engineers & Scientists, Ronald E. Walpole, Raymond H. Myers,			
	Sharon L. Myers, Keying Ye, Prentice Hall			
3	Probability and Statistics for Engineering and Sciences, Jay L. Devore, 5e, Cenage Learning			
4	Numerical Methods for Engineers Steven C Chapra, Raymond P Canale, Mc Graw Hill			
	Education			
5	Introductory Methods of Numerical Analysis by S S Sastry, PHI Learning Pvt Ltd			

Page 2 of 4

6	Numerical Methods in Engineering & Science with Programs in C, C++ & MATLAB, B. S.
	Grewal, 11e, Khanna Publishers

Supplementary learning Material:

1	Lecture Note
2	https://nptel.ac.in/courses/111/105/111105041/
3	https://nptel.ac.in/courses/111/106/111106112/
4	https://nptel.ac.in/courses/127/106/127106019/

Pedagogy:

- Direct Classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment (Tutorials)
- Interactive methods
- Seminar/Poster presentation

Internal Evaluation:

The internal evaluation comprised of written exam (40% weightage) along with combination of various components such as Certification courses, Assignments, Mini Project, Simulation, Model making, Case study, Group activity, Seminar, Poster Presentation, Unit test, Quiz, Class Participation, Attendance, Achievements etc. where individual component weightage should not exceed 20%.

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					S	R : Remembering; U : Understanding; A : Application,
R	U	A N E C		C	N: Analyze; E: Evaluate; C: Create	
20%	40%	30%	10%	0%	0%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Page 3 of 4

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage			
CO-1	1 Students are able to understand the basic knowledge and concepts of probability.				
CO-2	Able to understand the basic statistical concepts and measures	15			
CO-3	Able to understand several well-known distributions	20			
CO-4	Able to apply numerical methods to find solutions of (algebraic and transcendental) equation and solution of system of linear equations				
CO-5	5Able to apply various interpolation methods and work out numerical differentiation and integration20				
CO-6	Able to work out numerical solution of the ordinary differential equations using different methods				

Curriculum Revision:				
Version:	2			
Drafted on (Month-Year):	Jun-22			
Last Reviewed on (Month-Year):	-			
Next Review on (Month-Year):	Jun-25			

Page 4 of 4